
International Journal of Information Technology and Language Studies 
(IJITLS) 

 

Vol. 4, Issue. 1, (2020). pp. 1-11 
International Journal of Information Technology and Language Studies (IJITLS). 
http://journals.sfu.ca/ijitls 
 

 

An Improvement in Branch and Bound Algorithm for 
Feature Selection 

Ahood Naif Alharbi, Mohamed Dahab 
aalharbi1482@stu.kau.edu.sa; mdahab@kau.edu.sa 

 
Department of Computer Science, Faculty of Computing and Information Technology, King Abdul-Aziz 

University, Jeddah, Saudi Arabia 

Abstract. Branch and bound (BB) algorithm undergoes an exponential growth in feature selection as 
the number of features increases, which may require, in the worst cases, exploring the whole tree 
looking for an optimal solution. This paper presents an enhancement in the BB algorithm for feature 
selection using an approximate monotonic criteria function. The enhanced version of the sub-optimal 
BB algorithm seeking for the solution by cutting unpromising paths and deleting multiple features at 
each internal tree node based on a predefined tao variable. The experiment was applied to different 
datasets and compared to the original BB algorithm and numerous selection methods. The results show 
promising results in terms of accuracy, elapsed time, and tree size. 

Keywords: Branch and Bound; Feature Selection; Dimensionality Reduction; Artificial 
Intelligent. 

1. Introduction 
The central problem in machine learning is selecting a representative set of features used in constructing 

an easy and accurate classification model for a specific task. The problem known as dimensionality 
reduction, which is concerned about the space of hypothesis, indicates that an increase in the number of 
features leads to an exponential rise in hypothesis space (Alharbi and Dahab, 2018). The hypothesis is a 
function that predicts classes based on related data. The smaller the hypotheses space, the easier to find 
the right perdition hypotheses and vice versa. Such a process can be useful for both supervised and 
unsupervised learning problems. 

Dimensionality reduction falls in one of the two known categories: Feature Selection or Feature 
Extraction. Feature extraction defined as the task where an initial set of raw variables (features) is reduced 
to more manageable groups for processing while still wholly and accurately describing the original data set 
(Kamel and Hadi, 2014; Cunningham, 2008). 

While feature selection is the task that gets rid of redundant and irrelevant features to optimize the value 
of the criterion function J to reduce dimensionality (Liu and Motoda, 2007). In machine learning, three 
typical models are known as filter, wrapper, and embedded. The filter model is the fastest, easiest, and 
features are selected independently of the predicted model based on some criteria that rank the features 
previously and select the top m features. The wrapper model is more accurate but slower than the filter 
model because wrapper uses search algorithms to search through the space of possible features taking into 
account selecting features based on a prediction model and uses its performance to determine the quality 
of feature selection. The embedded model is selecting features during model building (Guyon et al., 2008; 
Sorzano et al., 2014). The following table below shows a comparison of the different characteristics of 
feature selection methods. 
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Selection 
Method 

Search Assessment Advantages Limitations Examples 

Filter  
 

Rank features to 
specific criteria like 
information gain 
(individual feature 
ranking or nested 
subsets of features) 
 

Use statistical 
tests 

 Robust 
against over-
fitting 

 Fast method 
 Simplicity 

May fail to 
select the 
most useful 
features 

Correlation, 
ANOVA, 
Information 
gain (Stein, 
1975), etc. 

Wrapper Search the space of 
most useful feature 
subsets based on a 
specific machine 
learning algorithm 

Use cross-
validation 

Can find the 
most valuable 
features 

Prone to 
over-
fitting 
Computati
onally 
expensive 

Forward 
selection, 
Backward 
selection 
(Derksen, 
1992), etc. 

Embedded  Search guided by the 
learning process 

Use cross-
validation 

Less 
computationall
y expensive 
than the 
wrapper 

Prone to 
over-fitting 

LASSO, Ridge 
Regression 
(Tibshira, 
1996), etc. 

Table 1. Feature Selection Methods. 

The BB algorithm considers as a greedy search approach by evaluating all the possible combinations of 
features against the evaluation criterion and choose the best subset of features. The evaluation criterion is 
known as the performance measure, which depends on the given problem. For instance, the regression 
evaluation criterion could be p-values, R-squared, Adjusted R-squared, similarly for classification; the 
evaluation criterion could be accuracy, precision, recall, f1-score, etc. Ultimately, the BB algorithm selects 
the subset of features that gives the optimal solution for the specified machine learning algorithm. 

The main objective of the study is to improve the original BB algorithm in feature selection in terms of 
consumed time and required resources. The findings should make an essential contribution to the field of 
machine learning that can potentially overcome the problem of dimensionality. Also, improving the BB 
algorithm is a practical step towards model interpret-ability.  

This paper is divided into five parts. The first part is a literature review to show different algorithms 
performance in feature selection. The second part covers the original BB algorithm concept and definition 
with an example. The third part presents the new enhancement sub-optimal BB algorithm sincerely. The 
fourth part shows the experimental results, analysis, and discussion, while the last part is the conclusion 
and future work. 

2. Literature Review 
General dimensionality reduction techniques presented in the following Table (2). 

Dimensionality Reduction 
Techniques 

Definition 

Percent Missing Values Drop variables that have a high percentage of missing 
values. 
(No of records with missing values  /  No of total records) 
(Friedman et al., 1997).   

Amount of Variation Drop or review variables that have a very low variation 
(Lewontin and Hubby, 1966). 

(ݔ)ܴܣܸ = ଶߪ  =  
1
݊  ݔ) − ଶ(ߤ



ୀଵ
 

Pairwise Correlations If two variables are highly positive or negative correlated 
to each other, drop one of them will reduce 
dimensionality without loss of much information 
(Lewontin and Hubby, 1966). 
 

Principal Component Analysis Dimensionality reduction that emphasizes variation and 
uses orthogonal transformation (Malhi and Gao, 2004). 
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Correlation with the target 
 
 

Drop variables that have a very low correlation with the 
target (Stein, 1975). 
 

Forward Selection It begins with an empty model and adds in variables one 
by one. In each forward step, add only variable that gives 
the single best improvement to the model (Derksen, 
1992). 
 

Backward Selection In contrast to the forward selection, it begins with all the 
variables selected, and removes the least significant one 
at each step, until predefined criteria are satisfied 
(Derksen, 1992). 

Stepwise Selection Similar to the forward selection process, but a variable 
can also drop if it is deemed not useful anymore after a 
certain number of steps (Derksen, 1992). 
 

Lasso (Least Absolute Shrinkage 
and Selection Operator) 

Type of linear regression that uses shrinkage where data 
values shrunk towards a central point, like the mean 
(Tibshira, 1996). 
 

Tree-Based Fit several randomized decision trees on various sub-
samples of the dataset and use averaging to rank order 
features (Guyon et al., 2008).  

 
 

Table 2. Dimensionality Reduction Techniques. 

In literature, many algorithms have been tested and evaluated to make the feature selection. Some 
algorithms guarantee to find the optimal subset of features m out of N features using specific criteria 
function J like exhaustive search and branch and bound (BB) algorithms (Jain and Zongker, 1997). 

In contrast, other sub-optimal algorithms may miss the optimal solution like sequential forward 
selection (SFS) and sequential backward selection (SBS) (Pudil et al., 1994)(Marill and Green, 
1963)(Whitney, 1971). Also, another research has used the genetic algorithm and HPC. They have 
accelerated the feature selection on the BCI dataset (the P300 based system). Genetic Algorithm (GA) and 
Differential Evolution (DE) are used as a search algorithm, while Linear Discriminant Analysis (LDA) and 
Support Vector Machine (SVM) used as a classifier. DE-SVM has resulted in an accuracy of 80% selecting 
42% of the original features only (Alwadei et al., 2017)(Alwadei et al., 2019). 

Several papers worked in developing the BB algorithm in feature selection, precisely due to its 
exponential growth that increased as the number of features increased. In 1993, a paper used a more 
efficient BB+ algorithm in terms of reducing search time and elimination of some calculations by 
minimizing redundant J evaluations in the BB algorithm. BB+, like the original BB, finds the optimal subset 
of features by traversing the minimum solution tree starting from the root to the leaf nodes (Yu and Yuan, 
1993). 

Also, considerable effort invested into the acceleration of the BB algorithm via reducing the calculation 
of J function that usually computed in each internal node. The reduction process depends on predicting the 
value of the objective function based on the statistics of the effect of discarding individual measurements 
collected from previously evaluated feature sets (Somol et al., 2004). Another improvement to BB made in 
2003, perform top-down and right-left search strategies with backtracking known as an improved branch 
and bound (IBB). They have utilized the information gained from the previous search and compared their 
results with BB, BB+, and FBB. IBB was faster than BB, BB+, and FBB (Chen, 2003). 

Moreover, Casasent has suggested a new adaptive BB algorithm that has four characteristics. The tree 
constructed based on the importance of the features, and the large initial bound was set up using the 
floating search method. Also, Casasent has suggested a new approach that determines the level from which 
it starts looking to reduce J calculations (Nakariyakul and Casasent, 2007). 

As seen in the literature, most of the enhancement papers struggle with the number of calculations and 
try to minimize it. However, the number of calculations of J criteria function noticeably increased as 
features increased, and the time, space complexity became unpractical in that situation. From this point of 
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view, we have suggested an enhancement of the BB algorithm that constructs a practical solution tree by 
eliminating many features in each internal node. 

3. The Branch and Bound algorithm 
The branch and bound (BB) algorithm were developed early by Narendra and Fukunaga in 1977, 

describing the problem of selecting the optimal subset m features out of N whole set of features that met 
specific criteria function J (Narendra and Fukunaga, 1977). One required assumption in the BB algorithm 
is that J has to be a monotonic function, i.e.  

݉ ∈ (݉)݆ ℎ݁݊ݐ ܰ < ݆(ܰ) 

For a better demonstration of the algorithm, a visual example is shown in Figure (1). The tree has five 
features N and supposes m subset of features is equal two, and the J is a maximization criteria function that 
satisfies the monotonic condition. 

(ݔ)ܬ =  ݅
∀∈௫

 

Each node in the tree denotes a subset of features, and the root consists of N features. The number of 
tree levels determined by the following equation: 

N-m+1 

The number of expected combinations of m features computed by the following formula: 

    ܥ
ே =

ܰ!
݉! (ܰ − ݉)!

 

 
Figure 1. Branch and Bound Tree. 

The further we go down the tree, one feature is eliminated at each level until the end up with the leaf 
nodes that have the only two candidate features m. The elimination process in the BB algorithm relies on 
selecting features that are not considered as preserved features. Preserved features for a particular node 
are those features that have deleted on its left side branches of the tree. 

In the BB algorithm, traverse the tree from right to left in the depth-first search pattern. The bound B is 
set up in the rightmost value leaf node, and anytime the criterion value J(x) in some internal node is found 
to be lower than the current bound B, the whole subtree may be cut off, and many computations may 
discard due to the monotonic condition. Otherwise, the bound is updated, and the subtree is explored, 
promising a better solution (Nilsson, 2007). The powerful of the BB algorithm is the guarantee to find the 
optimal subset of features without examining the whole subtree due to the monotonic condition.  

However, the BB algorithm is required for exploring all possible permutations in the worst-case, seeking 
the whole search space, and become an exhaustive search that costs 2N calculations (Liu and Motoda, 2007). 
Also, as the number of features increases, the efficiency of the BB algorithm noticeably decrease in terms 
of time and the more computations it requires, i.e., the number of levels constructed when the number of 



Ahood Naif Alharbi and Mohamed Dahab 5 

features N is 20 and demand subset of features m is five equal to 16 levels. In the next section, we introduce 
a new enhanced sub-optimal BB feature selection algorithm, which handles the limitations of space and 
time. 

4. The Proposed Enhancement Method of BB Algorithm 
Both the original BB and the new enhanced BB algorithms perform ‘top-down’ search with backtracking. 

If N is a huge number like 5000, 200, and so on, we can not use the BB algorithm. Applying the concept of 
window (w) on a set of features will allow the BB algorithm to work practically on a large number of 
features’ datasets. Let  

ܨ = { ݂, ଵ݂ , ଶ݂, ଷ݂ , … , ே݂ିଵ } 

Where N is the number of all features, and fi is the value of feature number i. The main goal is to maximize 
the objective function. 

ܼ =  ܺܤ

ேିଵ

ୀ

 

Where Bi describes the benefit of feature i (the absolute value of the correlation of the feature and the 
output) and Xi∈{0,1}, Xi=0 means the feature is neglected while Xi=1 means the feature is used.  

So, assuming N =20 features {f0,f 1,f 2 ,..,f 19} and w =5, which should be 4 ≤ w < 20 Then the selecting 
features would be as follows: 

[ ݂] = { ݂ , ݂ା௪ , ݂ାଶ௪ , … } 

Where [fi] is the equivalent set of features. S is the selected features, S={f_1,f_2,f_3,f_4,f_5} where 

ܵ ∩ ܵ =  ∅ , ܵ ∪ ܵ = ܵ 

Therefore, the sets will be equal to the window size as follows, 

ଵܵ = [ ଵ݂] = { ݂ , ହ݂, ଵ݂ , ଵ݂ହ} 

ܵଶ = [ ଶ݂] = { ଵ݂, ݂ , ଵ݂ଵ, ଵ݂} 

ܵଷ = [ ଷ݂] = { ଶ݂ , ݂, ଵ݂ଶ , ଵ݂} 

ܵସ = [ ସ݂] = { ଷ݂ , ଼݂ , ଵ݂ଷ, ଵ଼݂} 

ܵହ = [ ହ݂] = { ସ݂, ଽ݂ , ଵ݂ସ, ଵ݂ଽ} 

The new version of the BB algorithm depends on eliminating more than one feature in each internal 
node, which reduces the number of constructed levels as well as accelerates the algorithm. The number of 
deleted features in each node is determined by the tao variable value, which best specified according to the 
correlation between the features.  

Features correlation is a way to understand the relationship between multiple features in a given 
dataset. The relationship between the features could be decisive when both features A and B move in 
tandem, and they have a linear relationship or could be negative when feature A increases, then feature B 
decreases and vice versa. Features correlation can be determined easily by statistical methods like 
Spearman and Pearson Correlation Matrix (Adeli, 1999).  

Each of those correlation types can exist in a spectrum represented by values from 0 to 1, where slightly 
positive correlation features can be between 0.5 and 0.7. while a strong relationship can be expressed by 
correlation score value of 0.9 or 1. If there is a strong negative correlation, it will be represented by an 
amount of -1. It is known that if the dataset has perfectly positive or negative correlated features, then there 
is a high chance that a problem named Multicollinearity will impact the performance of the model. 

So, having prior knowledge about the correlation between a given set of features will allow us to best 
determine tao value in order to get rid of those correlated features. 

J function in the enhancement BB algorithm is an Approximate Monotonic Branch and bound (AMBB) 
which allows non-monotonic functions to be used, typically classifiers, by relaxing the cut-off condition 
with the hope that these nodes will lead to a feasible solution rather than that terminates the search on a 
specific node. 
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A threshold has been defined based on the nature of the data, whether it is stationary (mean, variance, 
and autocorrelation structure) or not. The threshold will be bigger if the data are not stationary. In each 
internal node, the criteria function is computed, and the bound B is set up in the rightmost leaf. As the 
original BB algorithm, once the criterion value J(x) in some internal node was less than the current bound 
B, due to the approximate monotonic condition, the whole sub-tree may be cut off. Otherwise, the bound is 
updated, and the sub-tree is explored.  

In figure(2), an example that used the new enhancement sub-optimal method consisting of 20-features 
artifact dataset, which contains 1000 samples. The target is 1 when (feature 1+ feature 2 < 7 or feature 4> 
feature 5 or feature 7%3==2) otherwise is 0. KNN (K-Nearest Neighbors) classifier was used as the J 
function that computes the highest accuracy of the subset of features m (Liao and Vemuri, 2002). 

 

 
Figure 2. The Enhancement BB Algorithm Tree. 

By exploring the correlation using Pearson correlation scores for all pairs of the 20 features in the 
dataset, the best tao to be used is 4. tao value used to determine how many features will be eliminated at 
each internal node; in this case, five features instead of 1 will be deleted in each internal node. The integer 
value, which determines the increment between each index for deletion, will depend on the length of the 
list of features in that node, for instance, at the root level, the deletion step will be four because 20 divided 
by 5 equals four and so on. The following table show step value for deletion at each level. 

levels No of Features Step delation value 
Level 0 20 4 
Level 1 15 3 
Level 2 10 2 

Table 3. Deletion Step Value. 

The number of levels decreased from 16 to 4 levels, and the candidate subset of features [0,4,8,12,16] 
scores 66.33% in 0.11 seconds elapsed time. 

5. Experimental results and analysis 
In this paper, the experiment was conducted on Fujitsu PRIMERGY CX400, Intel Xeon E5-2695v2 12C 

2.4GHz, Intel TrueScale QDR. This machine called Aziz launched on June 01, 2015, at King Abdul-Aziz 
University (Fuj, 2015) and considered to be one of the top 500 supercomputers (Erich Strohmaier). 

In the experiment, the KNN (K-Nearest Neighbors) classifier was used as the J function that computes 
the highest accuracy of the subset of features m. The performance has measured along with the change in 
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the dataset features’ number. The enhanced BB algorithm has tested across different real machine learning 
domain datasets called Wisconsin Diagnostic Breast Cancer (WDBC), Ionosphere Dataset, and Sonar 
Dataset obtained from UCI repository (William Wolberg, 1995)(Sejnowski, )(Sigillito, 1989).  

The enhancement sub-optimal BB algorithm select tao based on the correlation between the features in 
each dataset. Pandas profiling is used to understand the relationship between multiple variables and 
attributes in the three datasets (McKinney, 2008). 

The first part of the experiment is comparing the popular features selection methods with the new 
enhancement BB in terms of classification accuracy. The second part is mainly comparing the original BB 
algorithm with the new enhancement BB algorithm in terms of accuracy, elapsed time, and tree size. 

5.1. The Enhanced BB Algorithm Versus Several Feature Selection 
Techniques 

WDBC mammogram data is 2–class from the Wisconsin Diagnostic Breast Center (31 features, 357 
benign, and 212 malignant samples). The Ionosphere Dataset requires the prediction of structure in the 
atmosphere given radar returns targeting free electrons in the ionosphere. It is a binary (2-class) 
classification problem. The number of observations for each class is not balanced. There are 351 
observations with 34 input variables and one output variable.  

Sonar Dataset involves the prediction of whether or not an object is a mine or a rock, given the strength 
of sonar returns at different angles. It is a binary (2-class) classification problem. The number of 
observations for each class is not balanced. There are 208 observations with 60 input variables and one 
output variable. 

The desired number of features m can vary from the ones defined in table 4 according to selection field 
demand. In this experiment, we have defined m in Wisconsin Diagnostic Breast Cancer (WDBC) dataset as 
seven features out of 31, Ionosphere Dataset as seven features out of 34 and sonar dataset as four features 
out of 60).  

In the Table (4), the enhancement sub-optimal BB algorithm often beat the other six known feature 
selection methods in classification accuracy by selecting the informative features in the three datasets. 
Although the BB algorithm has lost its optimality, it presents high accuracy in a short time. Such 
acceleration will be beneficial when the datasets have an enormous amount of features. 

 
Selection 
Method 

Dataset No of Features 
(N) 

Desired No of 
Features 

(m) 

Classification 
Accuracy 

The 
Enhancement 
BB Algorithm 

Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 91.97 % 

Ionosphere Dataset 34 7 87.72 % 
Sonar Dataset 60 4 65.24 % 

PCA Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 73% 

Ionosphere Dataset 34 7 82% 
Sonar Dataset 60 4 62% 

ANOVA Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 89.7% 

Ionosphere Dataset 34 7 68.7% 
Sonar Dataset 60 4 64.1% 

Information 
Gain 

Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 89.7% 

Ionosphere Dataset 34 7 86.9% 
Sonar Dataset 60 4 65% 

FCBF Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 88.1% 

Ionosphere Dataset 34 7 85.9% 
Sonar Dataset 60 4 63% 
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Gini Decrease Wisconsin Diagnostic Breast 
Cancer 
(WDBC) 

31 7 89.7% 

Ionosphere Dataset 34 7 85.9% 
Sonar Dataset 60 4 60.2% 

  Wisconsin Diagnostic Breastࢄ
Cancer 
(WDBC) 

31 7 89% 

Ionosphere Dataset 34 7 86.1% 
Sonar Dataset 60 4 64.2% 

Table 4. The Enhancement BB Versus Several Feature Selection Techniques. 

5.2. The Original BB Algorithm Versus the Enhanced BB Algorithm 
 The three datasets also have been tested against the original BB and the enhancement sub-optimal BB 

algorithm to compare the performance in terms of accuracy, elapsed time, and tree size. In Table (5), the 
enhanced BB algorithm has reflected efficient results in terms of accuracy, time, and tree size.  

 
Dataset Name No of 

Features 
(N) 

No of 
Samples 

Desired 
No of 

Features  
(m) 

Algorithm Classification 
Accuracy 

Elapsed 
Time 

(seconds) 

Tree 
Size 

(levels) 

Wisconsin 
Diagnostic 
Breast Cancer 
(WDBC) 

31 569 7 Original BB 
Algorithm 

92.27 % 1.5 25 

Enhancement  
BB Algorithm 

91.97 % 0.08 7 

Ionosphere 
Dataset 

34 351 7 Original BB 
Algorithm 

86.32 % 1.33 28 

Enhancement  
BB Algorithm 

87.72 % 0.29 10 

Sonar Dataset 60 208 4 Original BB 
Algorithm 

55.00 % 0.94 57 

Enhancement  
BB Algorithm 

65.24 % .09 15 

Table 5. Different Datasets Performance Comparison. 

The original BB algorithm will cost 2N possible feature subsets in the worst case (where N is the number 
of features), which is computationally impractical. Also, tree size is a very influential factor, especially if the 
number of features is extensive. WDBC has only two leaf nodes, and seven levels constructed in .08 seconds 
and resulted in 91.97 % using the enhanced BB algorithm. While the original BB needs 25 levels and 
16963900000 leaf nodes to find the optimal solution.  

Despite that, the accuracy in WDBC using the original BB algorithm is higher than the enhancement sub-
optimal BB algorithm, which is expected, but on the two other datasets, the enhancement BB algorithm has 
proven its strength by achieving better accuracy.  

As seen in figure (4), the time is noticeably has improved and reflected better accuracy than the 
traditional BB version. The consumed amount of time in calculations will increase if the number of features 
increases. 

In Figure (5), we have shown how bigger the tree in both algorithms by counting the number of levels in 
the different number of features data sets. The tree is being enormous when features are eliminated one by 
one in each internal node, and the tree file cannot be opened. On the other hand, the enhanced BB algorithm 
constructs a more practical and reasonable tree in minimum time and higher accuracy. 
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Figure 3. Accuracy Criteria. 

 
Figure 4. Time Criteria. 

 
Figure 5. Tree Size Criteria. 

6. Conclusion and future work 
Based on a detailed study on the Branch and Bound algorithm concept in feature selection, we have 

enhanced the algorithm noticeably in terms of the number of computations and tree size. The improved BB 
algorithm relies on eliminating more than one feature in each internal node based on features’ correlation. 
We have tested the enhanced BB across the different number of features datasets taking into account 
accuracy, elapsed time, and tree size criteria. The improved BB algorithm has been tested against different 
selection methods. The results have shown an efficient performance compared to the original BB 
traditional algorithm and the other feature selection techniques. As future work, we will use more than 
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10,000 features data sets and parallel the enhanced algorithm implementing using high-performance 
computing.  
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